
Scientific research has provided strong evidence linking gut microbiota to the development of several diseases, including:
- Neuropsychiatric disorders: Anxiety, depression, attention deficit hyperactivity disorder (ADHD).
- Neurodevelopmental disorders: Autism spectrum disorder (ASD), schizophrenia.
- Neurodegenerative diseases: Alzheimer’s disease (AD), dementia, Parkinson’s disease (PD), multiple sclerosis (MS).
- Gastrointestinal diseases: Inflammatory bowel diseases (IBD), ulcerative colitis (UC), Crohn’s disease (CD), functional gastrointestinal disorders (e.g., irritable bowel syndrome (IBS)), non-alcoholic fatty liver disease (NAFLD).
- Metabolic diseases: Obesity, metabolic syndrome, Type 1 and Type 2 diabetes (DM).
- Addiction disorders: Food addiction, alcohol addiction, drug addiction (scientific evidence available).
- Immune and autoimmune diseases: Asthma, allergies, fibromyalgia, scleroderma, systemic lupus erythematosus (SLE).
- Respiratory and lung diseases: Chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF).
- Genitourinary diseases: Urinary tract infections (UTI), polycystic ovary syndrome (PCOS), fertility/infertility.
- Certain cancer types: Gastric cancer, colon cancer, pancreatic cancer, cervical cancer, prostate cancer, skin cancer.
- Dermatological diseases: Psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, hidradenitis suppurativa.
- Bone diseases: Osteoporosis, osteoarthritis, bone resorption.
The gut microbiota and the brain interact bidirectionally through multiple pathways. Research has identified six key pathways involved in this interaction:
- Metabolic pathway
- Neuronal pathway
- Neuroendocrine pathway
- Immunological pathway
- Barrier pathways (gut-blood barrier, blood-brain barrier)
- Signal transmission molecules (neurotransmitter) pathway
A detailed discussion of the mechanisms underlying these pathways will be provided in a future study. For now, only their names are listed.
1. Chakraborty P, Majumder P, Banerjee D, Sarkar J. Gut microbiotanexus: Exploringtheinteractionswiththebrain, heart, lungs, and skin axesandtheireffects on health. Medicine in Microecology, Medicine in Microecology 20;2024:100104
2. Mayer EA, Tillisch K, Gupta A. Gut/brainaxisandthemicrobiota. J ClinInvest 2015;125:926-38.
3. Long-Smith C, O'Riordan KJ, et al. Microbiota-Gut-Brain Axis: New TherapeuticOpportunities. AnnuRevPharmacol, 2020;60:477-502.
4. Aroniadis OC, Brandt LJ. Fecalmicrobiotatransplantation: past, presentandfuture. CurrOpinGastroenterol. 2013;29(1):79-84.
5. Bailey MT, Dowd SE, et al. Exposureto a socialstressoraltersthestructure of theintestinalmicrobiota: implicationsforstressor-inducedimmunomodulation. Brain BehavImmun 2011; 25:397-407.
6. Beilharz JE, Kaakoush NO, et al. Cafeteriadietandprobiotictherapy: cross talk amongmemory, neuroplasticity, serotoninreceptorsand gut microbiota in therat. MolPsychiatry 2018;23:351-61.
7. Mertsalmi TH, Aho VTE, et al. Morethanconstipation-bowelsymptoms in Parkinson’sdiseaseandtheirconnectionto gut microbiota. Eur J Neurol 2017; 24:1375-83.
8. Bercik P, Denou E, et al. Theintestinalmicrobiotaaffectcentrallevels of brain-derivedneurotropicfactorandbehavior in mice. Gastroenterology 2011;141:599-609, e1-3.
9. Michel L, Prat A. Onemore role forthe gut: microbiotaandbloodbrainbarrier. AnnTranslMed 2016;4:15.
10. 56. Berer K, Mues M, et al. Commensalmicrobiotaandmyelinautoantigencooperatetotriggerautoimmunedemyelination. Nature 2011;479:538-41.
11. Braniste V, Al-Asmakh M, et al. The gut microbiotainfluencesblood-brainbarrierpermeability in mice. SciTranslMed 2014;6:263ra158.
12. Collins SM, Kassam Z, Bercik P. Theadoptive transfer of behavioralphenotypeviatheintestinalmicrobiota: experimentalevidenceandclinicalimplications. CurrOpinMicrobiol 2013;16:240-5.
13. Collins SM, Surette M, Bercik P. Theinterplaybetweentheintestinalmicrobiotaandthebrain. NatRevMicrobiol, 2012;10(11):735-42.
14. Crumeyrolle-Arias M, Jaglin M, et al. Absence of the gut microbiotaenhancesanxiety-likebehaviorandneuroendocrineresponsetoacutestress in rats. Psychoneuroendocrinology 2014;42:207-17.
15. Cryan JF, Dinan TG. Mind-alteringmicroorganisms: theimpact of the gut microbiota on brainandbehaviour. NatRevNeurosci 2012;13:701-12.
16. Dalile B, Oudenhove LV, et al. The role of short-chainfattyacids in microbiota–gut–braincommunication. Nature RevGastroenterolHepatol, 2019; 16:461–78.
17. De Angelis M, Piccolo M, et al. Fecalmicrobiotaandmetabolome of childrenwithautismandpervasivedevelopmentaldisorder not other-wisespecified. PLoSOne. 2013;8(10):e76993.
18. deTheije CG, Wopereis H, et al. Altered gut microbiotaandactivity in a murine model of autismspectrumdisorders. Brain BehavImmun. 2014;37:197-206.
19. Desbonnet L, Clarke G, et al. Gut microbiotadepletionfromearlyadolescence in mice: implicationsforbrainandbehaviour. Brain BehavImmun 2015;48:165-73.
20. Desbonnet L, Garrett L, et al. TheprobioticBifidobacteriainfantis: an assessment of potentialantidepressantproperties in therat. J PsychiatrRes 2008;43:164-74.
21. Desbonnet L et al.,Microbiota is essentialforsocialdevelopment in themouse. MolPsychiatry, 2014;19(2):146-8.
22. Diaz Heijtz R, Wang S, et al. Normal gut microbiotamodulatesbraindevelopmentandbehavior. ProcNatlAcadSci USA 2011;108:3047-52.
23. Finegold SM, Sutter VL, Mathisen GE. Normal indigenousintestinalmicrobiota. In. Hentges DJ, ed. Human intestinalmicrobiota in healthanddisease. New York. AcademicPress. 1983:3-31.
24. Fung TC, Olson CA, Hsiao EY. Interactionsbetweenthemicrobiota, immuneandnervoussystems in healthanddisease. NatNeurosci 2017;20:145-155.
25. Hsiao EY, McBride SW, et al. Microbiotamodulatebehavioralandphysiologicalabnormalitiesassociatedwithneurodevelopmentaldisorders. Cell 2013; 155:1451-63.
26. Jeffery IB, O’Toole PW, et al. An irritablebowelsyndromesubtypedefinedbyspecies-specificalterations in faecalmicrobiota. Gut 2012;61:997-1006.
27. Kelly JR, Borre Y, et al. Transferringtheblues: depression-associated gut microbiotainducesneurobehaviouralchanges in therat. J PsychiatrRes 2016;82:109-18.
28. Kelly JR, Clarke G, et al. Brain-gut-microbiotaaxis: challengesfortranslation in psychiatry. AnnEpidemiol 2016;26:366-72.
29. Li Q, Zhou JM. Themicrobiota-gut-brainaxisanditspotentialtherapeutic role in autismspectrumdisorder. Neuroscience, 2016;324:131-9.
30. Li Q, et al. The Gut MicrobiotaandAutismSpectrumDisorders. Front Cell Neurosci, 2017;11:120.
31. Mangiola F, et al. Gut microbiota in autismandmooddisorders. World J Gastroenterol, 2016. 22(1):361-8.
32. Park AJ, Collins J, et al. Alteredcolonicfunctionandmicrobiotaprofile in a mouse model of chronicdepression. NeurogastroenterolMotil 2013;25;733-e575.
33. Rhee SH, Pothoulakis C, Mayer EA. Principlesandclinicalimplications of thebrain-gut-entericmicrobiotaaxis. NatRevGastroenterolHepatol 2009;6:306-14.
34. Sharon G, et al. Human Gut MicrobiotafromAutismSpectrumDisorderPromoteBehavioralSymptoms in Mice. Cell, 2019. 177(6):1600-18 e17.
35. https://www.instagram.com/dr.recepkesli/